Disclaimer
If you're planing to use information provided on this site, please keep in mind that all numbers and papers are added by authors without double checking. We of course try to keep results as accurate as possible, and whenever we got notice of an error it will be fixed, but this does not release you from the obligation of reading the papers and double checking the numbers listed here before using them.

HMDB

Dataset URL

Description : HMDB collected from various sources, mostly from movies, and a small proportion from public databases such as the Prelinger archive, YouTube and Google videos. The dataset contains 6849 clips divided into 51 action categories, each containing a minimum of 101 clips.

Number of Videos : 6849

Number of Classes : 51

Evaluation: HMDB Eval

Description:

Results


Result Paper Description URL Peer Reviewed Year
Result Paper Description URL Peer Reviewed Year
59.5 Multi-view super vector for action recognition[Cai, Z., Wang, L., Peng, X., Qiao, Y] MVSV URL Yes 2014
61.1 Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice[Peng, X., Wang, L., Wang, X., Qiao, Y] URL Yes 2016
61.7 A multi-level representation for action recognition[Wang, L., Qiao, Y., Tang, X] URL Yes 2016
59.4 Two-stream convolutional networks for action recognition in videos[Simonyan, K., Zisserman, A] URL Yes 2014
63.7 Modeling video evolution for action recognition[Fernando, B., Gavves, E., M., J.O., Ghodrati, A.] URL Yes 2015
65.5 Motion part regularization: Improving action recognition via trajectory group selection[Ni, B., Moulin, P., Yang, X., Yan, S] URL Yes 2015
59.1 Human action recognition using factorized spatio-temporal convolutional networks[Sun, L., Jia, K., Yeung, D., Shi, B.E] URL Yes 2015
63.2 Action recognition with trajectory-pooled deepconvolutional descriptors[Wang, L., Qiao, Y., Tang, X] URL Yes 2015
64.8 Long-term temporal convolutions for action recognition[Varol, G., Laptev, I., Schmid, C] URL Yes 2016
63.3 A key volume mining deep framework for action recognition[Zhu, W., Hu, J., Sun, G., Cao, X., Qiao, Y] URL Yes 2016
69.4 Temporal Segment Networks: Towards Good Practices for Deep Action Recognition[Limin Wang , Yuanjun Xiong , Zhe Wang , Yu Qiao , Dahua Lin , Xiaoou Tang , and Luc Van Gool] URL Yes 2016
57.2 Action recognition with improved trajectories[Wang, H., Schmid, C] URL No 2013
58.9 Hidden Two-Stream Convolutional Networks for Action Recognition[Yi Zhu , Zhenzhong Lan ,Shawn Newsam ,Alexander G. Hauptmann ] URL No 2017
70.6 Action Representation Using Classifier Decision Boundaries[Jue Wang , Anoop Cherian , Fatih Porikli , Stephen Gould] URL No 2017
69.8 ActionVLAD: Learning spatio-temporal aggregation for action classification[Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, Bryan Russell] URL Yes 2017
68.9 Spatiotemporal Pyramid Network for Video Action Recognition[Yunbo Wang, Mingsheng Long, Jianmin Wang, Philip S. Yu] Spatiotemporal Pyramid Network / BN-Inception URL Yes 2017
72.2 Spatiotemporal Multiplier Networks for Video Action Recognition[Christoph Feichtenhofer, Axel Pinz, Richard P. Wildes] Spatiotemporal Multiplier Networks + IDT URL Yes 2017
66.79 Action Recognition with Stacked Fisher Vectors[Xiaojiang Peng, Changqing Zou, Yu Qiao, Qiang Peng] Stacked Fisher Vectors (FV+SFV) URL Yes 2014
67 Generalized Rank Pooling for Activity Recognition[Anoop Cherian, Basura Fernando, Mehrtash Harandi, Stephen Gould] Generalized Rank Pooling + IDT-FV URL Yes 2017
51.4 Hierarchical Clustering Multi-Task Learning for Joint Human Action Grouping and Recognition[ An-An Liu, Yu-Ting Su, Wei-Zhi Nie, Mohan Kankanhalli] HC-MTL with STIP + BOW URL Yes 2017
66.4 Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset[Joao Carreira, Andrew Zisserman] Two-Stream I3D, ImageNet pre-training URL Yes 2017
80.7 Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset[Joao Carreira, Andrew Zisserman] Two-Stream I3D, Kinetics pre-training URL Yes 2017
71.8 Pillar Networks for action recognition[Biswa Sengupta, Yu Qian] ResNet/Inception + MKL-SVM URL Yes 2017
56.59 Robust Action Recognition framework using Segmented Block and Distance Mean Histogram of Gradients Approach[Vikas Tripathi, Durgaprasad Gangodkar, Ankush Mittal, Vishnu Kanth] segmented blocks URL Yes 2017
56 Video Classification With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor[Aaron Chadha, Alhabib Abbas and Yiannis Andreopoulos] Codec Based URL No 2017
63 Improved Rank Pooling Strategy for Complex Action Recognition[Eman Mohammadi, Q. M. Jonathan Wu, Mehrdad Saif] Improved Rank Pooling URL Yes 2017
71.7 Learning Long-Term Dependencies for Action Recognition With a Biologically-Inspired Deep Network[Yemin Shi, Yonghong Tian, Yaowei Wang, Wei Zeng, Tiejun Huang] shuttleNet URL Yes 2017
73.6 Pillar Networks++: Distributed non-parametric deep and wide networks[Biswa Sengupta, Yu Qian] Pillar Networks++ (4 Networks) URL No 2017
66.2 Lattice Long Short-Term Memory for Human Action Recognition[Lin Sun, Kui Jia, Kevin Chen, Dit Yan Yeung, Bertram E. Shi, Silvio Savarese] Lattice LSTM URL Yes 2017
69.7 Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection[Mohammadreza Zolfaghari , Gabriel L. Oliveira, Nima Sedaghat, Thomas Brox] Chained Multi-stream Networks URL Yes 2017

If you want to add this result data into your web page, please insert the following HTML code on your web page: