Powered by actionrecognition.net


Result Paper URL Peer Reviewed Year
Result Paper URL Peer Reviewed Year
59.5 Multi-view super vector for action recognition[Cai, Z., Wang, L., Peng, X., Qiao, Y] URL Yes 2014
61.1 Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice[Peng, X., Wang, L., Wang, X., Qiao, Y] URL Yes 2016
61.7 A multi-level representation for action recognition[Wang, L., Qiao, Y., Tang, X] URL Yes 2016
59.4 Two-stream convolutional networks for action recognition in videos[Simonyan, K., Zisserman, A] URL Yes 2014
63.7 Modeling video evolution for action recognition[Fernando, B., Gavves, E., M., J.O., Ghodrati, A.] URL Yes 2015
65.5 Motion part regularization: Improving action recognition via trajectory group selection[Ni, B., Moulin, P., Yang, X., Yan, S] URL Yes 2015
59.1 Human action recognition using factorized spatio-temporal convolutional networks[Sun, L., Jia, K., Yeung, D., Shi, B.E] URL Yes 2015
63.2 Action recognition with trajectory-pooled deepconvolutional descriptors[Wang, L., Qiao, Y., Tang, X] URL Yes 2015
64.8 Long-term temporal convolutions for action recognition[Varol, G., Laptev, I., Schmid, C] URL Yes 2016
63.3 A key volume mining deep framework for action recognition[Zhu, W., Hu, J., Sun, G., Cao, X., Qiao, Y] URL Yes 2016
69.4 Temporal Segment Networks: Towards Good Practices for Deep Action Recognition[Limin Wang , Yuanjun Xiong , Zhe Wang , Yu Qiao , Dahua Lin , Xiaoou Tang , and Luc Van Gool] URL Yes 2016
57.2 Action recognition with improved trajectories[Wang, H., Schmid, C] URL No 2013
58.9 Hidden Two-Stream Convolutional Networks for Action Recognition[Yi Zhu , Zhenzhong Lan ,Shawn Newsam ,Alexander G. Hauptmann ] URL No 2017
70.6 Action Representation Using Classifier Decision Boundaries[Jue Wang , Anoop Cherian , Fatih Porikli , Stephen Gould] URL No 2017
69.8 ActionVLAD: Learning spatio-temporal aggregation for action classification[Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, Bryan Russell] URL Yes 2017
68.9 Spatiotemporal Pyramid Network for Video Action Recognition[Yunbo Wang, Mingsheng Long, Jianmin Wang, Philip S. Yu] URL Yes 2017
72.2 Spatiotemporal Multiplier Networks for Video Action Recognition[Christoph Feichtenhofer, Axel Pinz, Richard P. Wildes] URL Yes 2017
66.79 Action Recognition with Stacked Fisher Vectors[Xiaojiang Peng, Changqing Zou, Yu Qiao, Qiang Peng] URL Yes 2014
67 Generalized Rank Pooling for Activity Recognition[Anoop Cherian, Basura Fernando, Mehrtash Harandi, Stephen Gould] URL Yes 2017
51.4 Hierarchical Clustering Multi-Task Learning for Joint Human Action Grouping and Recognition[ An-An Liu, Yu-Ting Su, Wei-Zhi Nie, Mohan Kankanhalli] URL Yes 2017
66.4 Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset[Joao Carreira, Andrew Zisserman] URL Yes 2017
80.7 Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset[Joao Carreira, Andrew Zisserman] URL Yes 2017
71.8 Pillar Networks for action recognition[Biswa Sengupta, Yu Qian] URL Yes 2017
56.59 Robust Action Recognition framework using Segmented Block and Distance Mean Histogram of Gradients Approach[Vikas Tripathi, Durgaprasad Gangodkar, Ankush Mittal, Vishnu Kanth] URL Yes 2017
56 Video Classification With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor[Aaron Chadha, Alhabib Abbas and Yiannis Andreopoulos] URL No 2017
63 Improved Rank Pooling Strategy for Complex Action Recognition[Eman Mohammadi, Q. M. Jonathan Wu, Mehrdad Saif] URL Yes 2017
71.7 Learning Long-Term Dependencies for Action Recognition With a Biologically-Inspired Deep Network[Yemin Shi, Yonghong Tian, Yaowei Wang, Wei Zeng, Tiejun Huang] URL Yes 2017
73.6 Pillar Networks++: Distributed non-parametric deep and wide networks[Biswa Sengupta, Yu Qian] URL No 2017
66.2 Lattice Long Short-Term Memory for Human Action Recognition[Lin Sun, Kui Jia, Kevin Chen, Dit Yan Yeung, Bertram E. Shi, Silvio Savarese] URL Yes 2017
69.7 Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection[Mohammadreza Zolfaghari , Gabriel L. Oliveira, Nima Sedaghat, Thomas Brox] URL Yes 2017
82.1 End-to-end Video-level Representation Learning for Action Recognition[Jiagang Zhu, Wei Zou, Zheng Zhu, Lin Li] URL No 2017
69 Action Recognition with Coarse-to-Fine Deep Feature Integration and Asynchronous Fusion[Weiyao Lin, Yang Mi, Jianxin Wu, Ke Lu, Hongkai Xiong] URL No 2017
72.6 Action Recognition with Coarse-to-Fine Deep Feature Integration and Asynchronous Fusion[Weiyao Lin, Yang Mi, Jianxin Wu, Ke Lu, Hongkai Xiong] URL No 2017
70.2 Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?[Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh] URL No 2017
69.2 Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification[Xiang Long , Chuang Gan , Gerard de Melo , Jiajun Wu , Xiao Liu , Shilei Wen] URL No 2017
70.9 Appearance-and-Relation Networks for Video Classification[Limin Wang , Wei Li , Wen Li ,Luc Van Gool] URL No 2017
72.6 Action Recognition with Coarse-to-Fine Deep Feature Integration and Asynchronous Fusion[Weiyao Lin , Yang Mi , Jianxin Wu , Ke Lu , Hongkai Xiong] URL No 2017
63.5 Temporal 3D ConvNets: New Architecture and Transfer Learning for Video Classification[Ali Diba, Mohsen Fayyaz, Vivek Sharma, Amir Hossein Karami, Mohammad Mahdi Arzani, Rahman Yousefzadeh, Luc Van Gool] URL No 2017
61.8 Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification[Xiaodong Yang, Pavlo Molchanov, Jan Kautz] URL Yes 2016
53.9 Action Recognition Using Super Sparse Coding Vector with Spatio-Temporal Awareness[Xiaodong Yang, Ying-Li Tian] URL Yes 2014
70.2 Compressed Video Action Recognition[Chao-Yuan Wu and Manzil Zaheer and Hexiang Hu and R. Manmatha and Alexander J. Smola and Philipp Kraehenbuehl] URL No 2017
78.7 A Closer Look at Spatiotemporal Convolutions for Action Recognition[Du Tran , Heng Wang , Lorenzo Torresani , Jamie Ray, Yann LeCun, Manohar Paluri] URL Yes 2018
66.2 Activity Recognition based on a Magnitude-Orientation Stream Network[Caetano, C., de Melo, V. H. C., dos Santos, J. A., Schwartz, W. R.] URL Yes 2017
80.9 PoTion: Pose MoTion Representation for Action Recognition[Vasileios Choutas, Philippe Weinzaepfel, Jérôme Revaud, Cordelia Schmid] URL Yes 2018
81.3 Video Representation Learning Using Discriminative Pooling[Jue Wang, Anoop Cherian, Fatih Porikli, Stephen Gould] URL Yes 2018
72.2 Non-Linear Temporal Subspace Representations for Activity Recognition[Anoop Cherian, Suvrit Sra, Stephen Gould, Richard Hartley] URL Yes 2018
63.8 MiCT: Mixed 3D/2D Convolutional Tube for Human Action Recognition[Yizhou Zhou, Xiaoyan Sun, Zheng-Jun Zha, Wenjun Zeng] URL Yes 2018
70.5 MiCT: Mixed 3D/2D Convolutional Tube for Human Action Recognition[Yizhou Zhou, Xiaoyan Sun, Zheng-Jun Zha, Wenjun Zeng] URL Yes 2018
74.2 Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition[Shuyang Sun, Zhanghui Kuang, Wanli Ouyang, Lu Sheng, Wei Zhang] URL Yes 2018
30.7 Geometry Guided Convolutional Neural Networks for Self-Supervised Video Representation Learning[Chuang Gan, Boqing Gong, Kun Liu, Hao Su, Leonidas J. Guibas] URL Yes 2018
72.6 End-to-End Learning of Motion Representation for Video Understanding[Lijie Fan, Wenbing Huang, Chuang Gan, Stefano Ermon, Boqing Gong, Junzhou Huang] URL Yes 2018
55.4 Learning and Using the Arrow of Time[Donglai Wei, Jospeh Lim, Andrew Zisserman, William T. Freeman] URL Yes 2018

Disclaimer

If you're planing to use information provided on this site, please keep in mind that all numbers and papers are added by authors without double checking. We of course try to keep results as accurate as possible, and whenever we got notice of an error it will be fixed, but this does not release you from the obligation of reading the papers and double checking the numbers listed here before using them. Please use all information provided on this table carefully and responsibly!

© Action Recognition Dot Net